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Executive Summary 

Continuing population growth and increased urbanization within disaster-prone areas have led to 

greater numbers of mass casualties and economic losses caused by natural hazards. The 

identification of an effective policy for managing limited emergency response resources in this 

environment, where every moment is crucial, will enable quick, life-saving decision-making. 

This work conceptualizes this real-time urban search and rescue team deployment problem as an 

M/G/c priority and preemptive spatially distributed queueing system with roving servers. 

Prioritization schemes that require minimal, on-site, real-time computation for operating the 

system are proposed and compared through numerical experiments conducted on disaster 

instances based on events from the 2010 Haitian earthquake.  

Of the 16 considered policies, seven policies were found to be promising under two 

selected performance measures. Two of these policies were particularly notable. The first of 

these prioritizes based on the lowest service time and highest number of live entrapped victims 

adjusted for losses while waiting for the USAR teams to arrive. The second ranks the worksites 

based on shorter service time and higher rate of change in survival likelihood, measures that 

together are representative of life expectancy. 
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1 . Introduction 

Continuing population growth and increased urbanization within disaster-prone areas have led to 

greater numbers of mass casualties and economic losses caused by natural weather and 

geophysical events (Center for Research on the Epidemiology of Disasters, 2011).  In such 

events, immediate response is required to reduce the number of casualties; hence, every moment 

in these post-disaster circumstances is crucial. However, local response capabilities are often not 

sufficient, and national and international resources are required to serve the acute demand for 

response and rescue. In this situation, even large numbers of responders cannot guarantee a 

successful rescue mission in the absence of appropriate management of critical limited resources. 

For instance, in response to the 2003 Bam earthquake in Iran, in addition to the local responders, 

more than 44 international organizations sent rescue teams to the disaster region. Due to lack of 

coordination, however, the number of fatalities may have been unnecessarily high. Casualties 

were estimated at more than 35,000 people (Ramezankhani and Najafiyazdi, 2008). High levels 

of casualties and damage were incurred more recently in, for example, the 2010 Haitian 

earthquake also due to difficulties with mobilizing available resources. These difficulties arose 

from inoperable infrastructure and communications means, which negatively impacted response 

and relief operations (Margesson and Taft-Morales, 2010).  

Early in the response stage, experts must make decisions based on insufficient data, since 

evaluation of the disaster impacted area takes time. However, such information, particularly as it 

relates to the conditions of the civil and healthcare infrastructures, is essential to efficient 

decision-making during this stage. Important considerations include: condition of roadways and 

remaining capacities of healthcare facilities, number and location of possible victims and their 
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medical conditions, and structural damage to buildings with probable live entrapped victims, i.e. 

the worksites. 

Countries around the world have developed emergency response protocols to prioritize 

rescue actions and accelerate decision processes. Decisions must be made in real-time with 

available information, and for expedient response, Urban Search and Rescue (USAR/US&R) 

teams must be immediately informed of their tasks. The United Nation’s International Search 

and Rescue Advisory Group (INSARAG) and Federal Emergency Management Agency (FEMA) 

have put in place prioritization-based methodologies for quick evaluation of the disaster area and 

rapid deployment of resources (USAR teams and equipment) to worksites. These methods rely 

on input from reconnaissance and initial structural triage.  

To prioritize response to the worksites, scoring methods that evaluate such factors as 

building materials, condition of voids (influenced by structural design and collapse pattern), 

usage type and special occupancy information, potentially trapped building inhabitants, known 

live victims, and accessibility to victims are used in FEMA’s approach. See Section 4 for 

additional details. Their protocol uses a simplified scoring method for prioritization, allowing 

quick, manual computation (National US&R Response System Field Operations Guide, 2003). 

This method, however, does not account for all of the factors, e.g., travel time between worksites 

that affect response. INSARAG’s method uses similar input to assign priorities to the worksites, 

but instead of quantifying the inputs, existence or nonexistences of specific circumstances are 

used to attribute priority levels. By exploiting the capabilities of widely available computer 

technologies and new information sources (including evolving information on building 

conditions and probable survivors), important problem complexities and additional key 
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characteristics not considered in the FEMA and INSARAG methods can be captured in the 

decision-making process.  

This work conceptualizes the USAR team deployment problem as an M/G/c (M = 

Poisson arrivals, G = generally distributed service times, c = number of servers) priority and 

preemptive spatially distributed queueing system with roving servers. This interpretation of the 

problem helps to examine and suggest modifications to existing INSARAG and FEMA 

prioritization schemes to take advantage of these new information sources. Moreover, developed 

prioritization schemes also address issues of dependence among contributing factors, 

assumptions of additivity, issues of subjectivity, scaling inconsistencies, and assumptions of 

constancy (specifically that the number of live entrapped victims present during the prioritization 

will not change by the time the team travels to and accesses these potential survivors) present in 

the existing schemes. Prioritization schemes for operating the queueing system are proposed and 

tested. These policies can be used directly to enable quick decision-making in real-time USAR 

operations. 

A review of related studies to the USAR team deployment problem and discussion of key 

problem aspects are provided in Section 2. Details of the modeling framework, system 

performance measures and approximation methods for their quantification, and design of a 

simulation platform for demonstrating and testing this framework are given in Section 3. In 

Section 4, the FEMA prioritization scheme is explained and alternative policies are introduced. 

The prioritization schemes or policies were tested and compared on disaster instances based on 

events from the 2010 Haitian earthquake. These instances are described in Section 5. This is 

followed by results from numerical experiments conducted in the simulation environment on the 

Haitian instances in Section 6. Analysis and insights are also provided. Additional comparison to 
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optimal deployment decisions under perfect information is made. The number of live entrapped 

victims extracted in an optimal response provides an upper bound for assessing the individual 

proposed policies. Conclusions and extensions are given in Section 7. 

2 . Prior Literature on Optimal Team Deployment in Post-Disaster Situations 

The general topic of emergency management has been widely studied; however, few works have 

focused on the deployment of rescue resources with the aim of maximizing the number of saved 

lives post-disaster. The most relevant work is by Chen and Miller-Hooks (2012). Their work 

addresses the USAR team deployment problem with the objective of maximizing the total 

expected number of survivors (i.e. entrapped victims who are successfully extricated while still 

alive). They proposed a Multistage Stochastic Program (MSP) to model and conceptualize the 

USAR team deployment problem accounting for evolving information as situational awareness 

improves. To solve the MSP, the problem is decomposed into a series of interrelated two-stage 

stochastic programs that are solved exactly in a rolling horizon framework. The procedure 

exploits real-time information as it is received over decision epochs. While pertinent to 

conceptualizing the USAR team deployment problem under real-time information, their 

approach is not suitable for real-time application due to excessive computational and memory 

requirements. In fact, simply enumerating feasible scenarios needed for this approach is difficult 

given that the number of scenario instantiations which may arise can be exceptionally large. 

Thus, while this earlier work provides a framework from which to understand the team 

deployment problem, it has limited utility in practical, field applications. 

A second closely related study is by Fiedrich et al. (2000). Their work modeled the 

problem of optimal post-disaster allocation of rescue resources as a type of dynamic resource 
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allocation problem. Their formulation seeks an optimal allocation of resources in response to 

information on survivor locations with the goal of minimizing the number of casualties over a 

time horizon. Casualties are incurred in three stages of the rescue operation: at the disaster site, 

in the transfer time to the hospital, and at the hospital. The formulation does not account for the 

possibility of receiving updated information on the disaster scene, nor does it consider many of 

the other situation details. Two specialized heuristics for its solution were proposed. 

There are several classes of optimization problems with relevance to the USAR team 

deployment problem, including problems in: dynamic routing and scheduling, dynamic resource 

allocation and team orienteering. Their relevance to the USAR team deployment problem is 

discussed by Chen and Miller-Hooks (2012). They note that each of these problem classes differs 

from the USAR team deployment problem in specific and important problem characteristics. 

That is, each omits one or more of the following problem facets: decreasing survival likelihood 

for entrapped victims; need to maximize the number of survivors; that service times or required 

resources depend on the order in which service is provided; and that steady state cannot be 

reached within the finite and limited decision time horizon of post-disaster rescue operations. 

The focus of this work is to develop real-time solution policies for USAR team deployment 

considering these features as well as uncertainty in future conditions and possible benefits from 

updated information over a rolling time horizon. The proposed alternative method to conceiving 

the USAR team deployment problem based on queueing provides a platform for both 

conceptualizing and evaluating existing and proposed resource allocation strategies.  
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3 . Queueing System and Simulation Platform  

3.1 Conceptualization as a Queueing System 

The M/G/c priority and preemptive spatially distributed queueing system with roving servers 

conceptualization of the USAR team deployment problem is presented in this section. In this 

conceptualization, USAR teams are modeled as servers that move to the customers over the 

disaster region. The order in which customers are served is determined by an operational policy. 

Common policies used in queueing system modeling include, for example, first-in first-out 

(FIFO) or last-in first-out (LIFO). The FEMA prioritization scheme offers an alternative policy 

with specific application to USAR operations. In this context, worksites will enter the waiting 

queue. They will be ranked based on the chosen policy and the teams will generally attend to 

victims at those worksites with highest rankings first. The considered queueing system allows 

preemption. Preemption permits redeployment in the event that new information arises indicating 

that moving to an alternative site would be beneficial despite that work at the current site is 

incomplete. In the current National US&R Response System Field Operations Guide (2003) 

there are instructions for how to treat and mark preempted worksites and preemption decisions 

are to be made by response planners. The system is considered over a time horizon during which 

the system state (i.e. position of USAR teams and unserved worksite locations) changes. Survival 

likelihood, arrival of new USAR teams, service time estimates, and estimates of travel time 

between worksites may change stochastically depending on post-disaster relief activities and 

investigations.  

Alternative operational policies are devised in the next section. These policies can be 

used in real-time to prioritize the worksites. To choose a best policy, the alternatives can be 

compared through an evaluation of the queueing system operations under the devised operational 
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policy. Ideally, such an evaluation would be performed analytically. Such analytical assessment 

is described next. The following nomenclature is employed in this description.  

i, j 
 

: Index of worksites 
k : Index of the USAR team deployment policies 
t 
 

: Decision time 
wi 
 

: Worksite i  
APk : Assignment Policy k  of USAR teams 
Sit : Service time at worksite i  estimated at time t  (time to access victims once on 

site) 
Βit : Drop in survival likelihood of live entrapped victims at worksite i  at time t  
tti,j : Travel time between worksites i  and j  plus equipment set-up time  once on 

site 
ri : Initial estimate of number of live entrapped victims at worksite i  
ΔSLit, it+Δt : Change in survival likelihood of live entrapped victims at worksite i  between 

time t  and  t t+ ∆  
Pfi : FEMA priority value for worksite i  
V(APk) : Value of Policy k   by the end of the decision horizon 
Wqi

k : Waiting time of worksite i  under Policy k  
Nwt   : Number of worksites waiting in the queue at time t  

 
Note that set-up time is the time that USAR teams need to place the heavy equipment 

(e.g. cranes) safely at the site and decide on the best rescue path. Service time for each worksite 

is defined as the time that USAR teams require to extricate the live entrapped victims from under 

the debris. It includes the time to set-up needed equipment.   

Typically, queueing systems are assessed in terms of average waiting time in queue, 

average number of customers in the queue or in the system, total time required to serve a given 

number of customers or number of customers that can be served in a given time period. 

Analytical results, including steady-state exact formulae and approximations for these measures, 

have been published previously for many types of queueing systems. See, for example, 

(Kleinrock, 1976). The majority of results are for stationary customer-to-server queueing models, 

where customers line up to be served. Results associated with queueing systems with roving 
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servers (server-to-customer systems) are given in (Larson and Odoni, 1981) and more recently in 

(Boyaci et al., 2011). As these systems are complex, derived results are limited by a variety of 

assumptions, including the existence of only a single server and very simple prioritization 

schemes or multi-server models with no preemption and priority. 

The mean waiting time and number of customers in the queue at steady-state conditions 

are derived in (Larson and Odoni, 1981) for a non-preemptive server-to-customer spatial 

queueing system with one server and FIFO ordering.  This work further showed that the mean 

number of customers and mean waiting time in the queue depend on the means and variances of 

two service time distributions: service time of the busy period and all succeeding periods. If 

these two service time distributions have identical mean and variance, the performance measures 

of the queueing system in steady-state can be computed using equations that are very similar to 

that of standard M/G/1 queueing systems using Pollaczek-Khintchine formulae.  

For multi-server spatial queueing systems, Larson (1974) proposed the hypercube 

queueing model. This model applies where travel times are insignificant in comparison to on-site 

service times, and thus, service times are independent of location. He showed that travel times 

can be included within this framework using a calibration strategy. Even with the assumption of 

insignificant travel times, it is recognized that the number of states grows exponentially with 

number of servers (e.g. Boyaci et al., 2011). Boyaci provides a review of performance measure 

estimation methodologies associated with hypercube models devised for a variety of such multi-

server systems. However, it appears that there are no analytical results for multi-server, server-

to-customer spatial queueing systems with priorities and preemption. 

While travel times may be negligible for many emergency response applications, in 

circumstances involving large-scale regional disaster events, travel times between worksites may 
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be significant and the order in which trips between worksites are taken can affect system 

performance. To incorporate travel times in queueing models, travel times can be included in 

service times. However, this creates order-dependent service times, and no methodologies exist 

for the computation of performance metrics in this context. This order dependence arises, 

because service times at worksites depend not only on the time spent at each site, but the time 

spent in transit from prior sites. This is further complicated by the arrival of worksites that were 

not previously known. 

3.2 Performance measures 

In the context of USAR team deployment, a critical performance measure is the number of 

survivors. In fact, survival likelihood is monotonically decreasing with varying rates depending 

on the building material, collapse patterns, condition of voids, building usage and physical 

condition of victims as discussed in Coburn et al. (1991). The time until worksites are served by 

the teams (i.e. the waiting time in queue) depends on the sequence of visited worksites, service 

times at previous worksites and travel time between worksites. Moreover, the sequence affects 

the number of survivors. Thus, the number of survivors at the end of the decision horizon 

depends on the team deployment strategy, that is, the prioritization method used in the queueing 

model.  kV(p ) , the sum of survivors from all the identified worksites at the end of the search 

and rescue period T can be computed as in equation (1). 

( ) (1 )k k
i it qi

t T i N
V P r Wβ

∈ ∈

= −∑∑         (1) 

 An additional performance measure of interest is the time-averaged number of worksites 

waiting in the queue ( whN ). This is given in equation 2. 
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/wh wtt
N N T=∑           (2) 

This measure is of particular importance where reliable information on live entrapped victims at 

the known worksites is not present. Its value is also a function of prioritization schemes 

employed in the queueing model.  

While equations 1 and 2 provide structure for computing the number of live entrapped 

victims or worksites served, derivation of equations for specific elements of these formulae, e.g. 

k
qiW , have been formidable. Thus, an alternative simulation-based technique is employed.  

3.3 Discrete-Event Simulation Framework 

A discrete-event simulation framework was developed using the Python programming language. 

Simulation design is based on a queueing system conceptualization developed in this section. 

In the simulation environment, a customer represents an identified worksite. The state of 

the system at each point in time is described by the number of worksites for which service is not 

yet completed and location and status of the USAR teams (idle, busy, in transit). Possible events 

include: receiving an update on the characteristics of a worksite, identification of a new worksite, 

arrival of a new USAR team to the disaster impacted area, and completion of service at a 

worksite. Priority rankings are reexamined upon each event, and team deployment decisions are 

updated allowing for preemption where found to be beneficial.   

Simulation design is based on 3 routines: Service Request, Server Assignment, and 

Arrival. Key to the simulation model are priority computation and replication of preemption 

decisions. The Service Request routine schedules tasks given preemption decision rules and new 

information on worksites. Preemption can require that a team leave a worksite before completing 
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service or be redeployed while in transit to a worksite to serve a worksite with higher priority. 

Priorities are computed within the Server Assignment routine. The Arrival routine records arrival 

times of servers at customers and updates the server status from “in transit” to “at location.” 

Flowcharts of all three simulation routines are presented in Figures 1 and 2.  

In the simulation model, when an event occurs that raises the priority of unserved sites 

beyond that of sites that are in service or to which teams are in transit, a team may be 

redeployed. The decision to redeploy is made with a predefined probability for worksites 

suffering from light or moderate structural damage with no heavy equipment requirements. If 

service is preempted, that portion of service time that was completed is credited when the site is 

revisited. However, survival likelihood diminishes as time passes and, thus, the number to be 

saved from that site may be smaller than if the service to the site was completed as initially 

designed. A second USAR team can complete the service; that is, service upon return to the site 

need not be completed by the same USAR team that began work at the site.  

11 
 



 

Figure 1 Flowchart of Service Request Routine  
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Figure 2 Flowchart of Arrival Routine (left) and Server assignment (right) 
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4 . Proposed Deployment Policies  

Search and rescue missions begin with assessment of the disaster impacted area. Initial 

investigations provide insight to USAR team managers to create an efficient response plan. 

FEMA suggests two general search and rescue approaches (National US&R Response System 

Field Operations Guide, 2003). The first option applies to small areas of impact wherein the area 

is divided into sectors and a team is deployed to each sector. It is assumed that there is sufficient 

response capabilities for the impacted region. For large affected regions, where response 

capacities are exceeded and thus resources are inadequate, worksites requiring response are 

prioritized. 

Sixteen prioritization schemes are proposed here and described in Table 1. Each scheme 

can serve equivalently as the operational policy employed within the spatial queueing system 

model of Section 3. Thus, to assess and compare the performance of these policies, performance 

of the queueing system under the different policies can be evaluated. 

The policies consider a variety of characteristics. These characteristics include: worksite 

detection times and locations, service times, travel times, diminishing survival likelihoods and 

urgency for serving worksites due to changes in survival likelihood, or surrogates thereof. 

Factors included in the policies were chosen based on their anticipated impact on prioritization 

performance in terms of number of survivals. Single factor experiments were conducted to 

determine if each considered factor would serve best in the numerator or denominator. For 

example, ranking based on highest and lowest service times were tested. It was found that 

assigning higher priorities to worksites with shorter service times significantly improves the total 

number of survivals, and thus, service times were included in the denominator. A similar choice 

was made with respect to travel times. Additionally, adjustments for loss are made in comparison 
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to the FEMA prioritization. With these guiding principles for policy creation in mind, more than 

25 policies were created. Based on results from preliminary experiments, 15 of these policies 

were selected for further analysis as exhibited in Table 1.  

Team-to-worksite assignment decisions are updated when information on new worksites 

is received, estimates on current worksites are updated or a USAR team finishes its service at a 

location. These serve also as the events within the discrete-event simulation (DES) environment. 

Let the set T=[e0=0, e1,e2, …, en] be the set of event times, one such event time denoted by en, for 

n = 0,…,T during the rescue period. Relative priority scores with respect to the location of USAR 

teams for all worksites are re-calculated using the suggested formulae from Table 1 upon each 

event, en. Available teams are then assigned to the worksites with highest rank. 

Table 1  Proposed USAR Team Deployment Policies 

Policy ( )kPA  Priority Computation unit 

FEMA FEMA scoring Scheme Pfi score 

FAL FEMA Adjusted for Loss Pfi – ri. ·ΔSlit, it+ tt(ij) score 

FAST FEMA Adjusted by 
Service Time Pfi/Sit score 

FALS FEMA Adjusted for Loss 
and Service Time Pfi – ri  ·ΔSlit, it+ tt(ij)/Sit score 

FATT FEMA Adjusted by 
Travel Time Pfi/tt(ij) score 

FALR FEMA Adjusted for Loss 
Rate Pfi – ri. ·ΔSlit, it+ tt(ij)/ ΔSlit, it+ tt(ij) score 

NW Nearest Worksite 1/tt(ij) hour-1 

LST Lowest Service Time 1/Sit hour-1 

HE Highest Number of Live 
Entrapped Victims  ri # of people 

HEAL HE Adjusted for Loss 
Rate ri ·(1- ΔSlit, it+ tt(ij)) # of people 

CS Critical drop in 
itSl  ΔSlit, it+ tt(ij) # of people / hour 
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RCS 
Reverse of Critical Drop 
in 

itSl  1/ ΔSlit, it+ tt(ij) hour / # of people 

HRCS HE and RCS ri/ ΔSlit, it+ tt(ij) hour 

LRCS LST and RCS 1/(Sit ·ΔSlit, it+ tt(ij)) 1/ # of people 

HLRCS HE and LRCS adjusted 
by loss due to travel ri ·(1- ΔSlit, it+ tt(ij))/ (Sit ·ΔSlit, it+ tt(ij)) 1 

HEALS HEAL and LST ri ·(1- ΔSlit, it+ tt(ij))/Sit # of people / hour 

 

The FEMA priority value, fiP , associated with each worksite i is taken as the sum of 

individual scores by category listed in Table 2. The structural triage team must provide an 

estimate of scores for every individual building affected by the disaster following the US&R 

Response System, Field Operations Guide (2003).  This information can be modified during the 

response phase by further investigations and more thorough structural testing. This prioritization 

scheme accounts for some factors that affect survival likelihood at each worksite and likely 

number of survivors present. It implicitly assumes that these factors are additive with equal 

weight. The main idea of this FEMA prioritization scheme is that worksites with better structural 

condition and stability get higher rank. However, some key factors affecting survival likelihood, 

such as physical condition of the live entrapped victims, are not included.  

Table 2 FEMA Prioritization Guideline (retrieve from US&R Response System, Field Operations Guide, 
Structure Triage Form, 2003) 

General Category Included Factors FEMA Scores 

Estimated Number of 
Live Entrapped Victims 

Potential number of 
live entrapped victims 

1 to 50 (divided by 5) known live entrapped victims 
(add +5)  

Demographic 
distribution* Building type (Schools/Hospitals add 25) 

Structural 
Characteristics 

Structural material  Wood, concrete, steel, masonry, precast concrete 

Condition of voids  Very compact, separate layers  to partial collapse 
(scale between 1 to 20) 

Time to get to the 
victims  24 hours to 2 hours (scale between 1 to 20)  

Chance of further 
collapse  Low to  high chance (scale between -1 to -20) 
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* Schools and hospitals are given higher priority 

This FEMA prioritization method does not account for travel time between or to 

worksites from the emergency operations center (EOC). In unreliable and heavily damaged 

environments, travel between worksites can take very significant time. Moreover, during the 

response phase, significant effort to clear debris and open passages in the region will be 

underway (e.g. Koike et al., 2004), and travel time between worksites will be changing over the 

course of the response phase. Obtaining travel time estimates in disaster scenarios has become 

less problematic in recent years. In fact, in the 2010 Chilean earthquake in Bio-Bio 

(Caminoschile, 2013), individuals created a coded Google map using social media applications. 

This map provided updated information on the damage-level to the transportation infrastructure 

in the disaster region after the earthquake.  As time passes, the number of live entrapped victims 

diminishes. Thus, it is essential to consider time to access these victims (i.e. service time) in the 

prioritization. 

The additional 15 policies defined in Table 1 seek to overcome some of the omissions or 

simplifications of the FEMA prioritization scheme. All inputs required by the proposed protocols 

except travel time between worksites and an explicit survival likelihood function are currently 

required for use in the FEMA response procedures as indicated in Table 2.  

FAL, FALS, FALR, HEAL, CS, RCS, HRCS, LRCS, and HLRCS policies incorporate 

survival likelihood and/or changes in the rate of this likelihood. Note that survival likelihood 

functions used in these policies can be empirically derived from data associated with previous 

events, laboratory structural tests, and experience in the field. A few works have developed 

probabilistic models to estimate post-disaster injury severity of the victims involved in a building 

collapse. The models use information on structural type and earthquake intensity (e.g. Frolova et 
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al., 2011).  Coburn et al. (1991) studied survival likelihood progression over time for varying 

structural materials.  

With the exception of CS and RCS, these policies also consider travel and set-up times, 

the latter of which will vary by worksite. These policies prioritize according to survival 

likelihood computed from the point in time that the USAR team starts the task, instead of the 

time that the dispatching decision is made. That is, it captures the reduction in survival likelihood 

due to access times. FAL, FALS, and FALR policies are modifications of the FEMA policy, 

while HEAL, LRCS, and HLRCS are based on estimated number of live entrapped victims, 

service times and changes in survival likelihood during the time it takes for the USAR teams to 

travel between worksites.  

The FATT policy modifies the FEMA prioritization approach to account for travel time 

and set-up times between worksites, but survival likelihood is omitted. By following this policy, 

worksites that are in relatively better structural condition with simultaneously shorter required 

access times will have higher rank. By comparison, the NW policy focuses directly on the travel 

and set-up times, omitting the FEMA score elements. 

The impact of service times is investigated through the inclusion of the FAST policy. 

When there is a tie in fiP  for two worksites, higher priority will be given to the worksite with the 

lower estimated service time. FALS combines aspects of two policies: FAL and FAST. It adjusts

fiP  for the arrival time of a USAR team at the worksites while giving higher priority to the 

worksites with lower service times.  

The benefits corresponding to prioritizing worksites with greater number of live 

entrapped victims in better physical condition is investigated in the LRCS policy by giving 
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higher weight to those worksites with lower service times and flatter survival likelihood 

functions. In addition to factors included in the LRCS policy, the HLRCS policy adjusts for loss 

incurred during the USAR team’s travel to the worksites.  

Additional simpler policies, including LST, HE, CS, and RCS policies, are also suggested 

for comparison purposes. Comparison of queueing system performance under these simpler 

policies to performance under other suggested policies will enable a deeper understanding of the 

importance of access and service times to a best policy creation.  
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5 . Experimental Setting   

The performance of the spatial queueing system described in Section 3 is assessed under each of 

the proposed operational policies presented in Section 4. The assessment is completed within the 

simulation platform presented in Section 3. The numerical experiments were performed on a 

Windows 7 personal computer with one 3.20 GHz CPU processor and 6.00 GB RAM. Results 

and analyses are provided in Section 6. 

5.1 Problem instance setting  

The queueing system was evaluated under each policy for 5 replications of approximately 6,000 

randomly specified problem instances derived from publically available information, including 

structural failure data, associated with the 2010 earthquake in Port-au-Prince, Haiti. The problem 

instances follow the case study setting in (Chen and Miller-Hooks, 2012) as closely as possible, 

noting some differences in assumptions. 

110 worksites were identified from satellite images as depicted in Figure 3. Building use 

(school, government, hospital, other) and damage level were presumed for each worksite. 58 

buildings were identified as potential worksites from the start of the rescue period based on the 

existence of visible damage, indicated by circles in Figure 3. Identification of the remaining 

worksites was assumed to follow a Poisson distribution with mean 0.83 worksites per hour over 

the decision horizon (Chen and Miller-Hooks, 2012). These worksites are shown in Figure 3 by 

dashed circles. The EOC was assumed to be located at the Toussaint Louverture International 

Airport in Port-au-Prince, indicated by a square mark in Figure 3..  
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Figure 3 Identified Worksites in Port-au-Prince, Haiti, Overlaid on Google Map (adapted from Chen and 
Miller-Hooks, 2012)  

 

Survival likelihood was assumed to be one at the beginning of the rescue period, and the 

survival likelihood function is presumed to be negative exponentially distributed as in (Coburn et 

al., 1991). At each time instance, a maximum of one USAR team was assigned to each worksite. 

Individual teams work 12 hours per day; although, the response effort is carried out 24 hour per 

day until its conclusion. It is further assumed that no time is lost in changing shifts. Five USAR 

teams are available at the beginning of decision horizon, and five additional teams arrive over the 

first 24 hours of the response phase. Their arrival times are known in advance. The rescue period 

is assumed to be five days or 120 hours. Euclidean distances on a plane were employed in 

estimating initial travel times with an assumed constant travel speed of 40 miles/hour (Chen and 

Miller-Hooks, 2012). Travel times were designed to vary under different problem instances. To 

create the random travel times, initial travel times were multiplied by a random variable with 

distribution ~U[0.5,2] hours.  

21 
 



To simulate the number of live entrapped victims in each affected building, random 

variates were generated for time-of-day (probability 0.23 during working/school hours) and 

earthquake magnitude (5 to 9 with equal probability). 

Considering the different damage levels and building uses shown in Figure 3, an estimate 

of ir  is made for each identified worksite assuming that the number of survivors at the given 

point in time is uniformly distributed on [0, specified upper bound]. The upper bound was 

calculated from the product of the number of estimated persons present in the building just prior 

to the earthquake equation and the demand generation ratio given in Table 3. 

Table 3 Parameters of Entrapped Victim Generation (from Chen and Miller-Hooks, 2012) 
Damage Level School Government Hospital Others 

Destroyed 0.6 0.54 0.48 0.42 

Severely Damaged 0.80 0.72 0.64 0.56 

Moderately Damaged 1.00 0.90 0.80 0.70 

No Visible Damage 0.50 0.45 0.40 0.35 
 

Results from (Frolova et al., 2011) on the physical condition of live entrapped victims are 

employed to estimate the initial condition of people trapped in a building in the disaster region. 

In their work, Florova et al. analyzed empirical data on casualties from historically strong 

earthquakes. They suggested the use of Equation 3 for estimating the probability of injuries and 

fatalities for a given building.  

5

1
( ) ( ) ( | ),

k iC B k i
i

P I P I P C B
=

=∑
        (3) 

22 
 



where 
kCP (I)  is the probability that a person located within a given building is injured or dead 

given an earthquake with intensity I . ( )
iBP I  is the probability of damage state i, i∈{1,…,5} for a 

given building type B under an earthquake with intensity I, and k iP(C | B )   is the survival 

likelihood (for C1 = injury, C2 = casualty) of people in building of type B under damage state i as 

derived from regional empirical data. As an example, estimates from (Frovola et al., 2011) for 

( )
kCP I  in a building made from massive stone, unreinforced bricks, concrete blocks, or reinforced 

concrete floors (buildings of type MMSK-86) are given in Table 4.  

Table 4 
kCP (I)  for a Building of Type MMSK-86 under Different Damage States (Retrieved from Frovola et 

al., 2011) 

Social losses Ck 
Damage states 

3 4 5 
Fatalities (k=1) 0.02 0.23 0.6 

Injured (k=2) 0.09 0.37 0.37 

Total 0.11 0.6 0.97 
           

To generate random problem instances herein, 
kCP (I)  was estimated from building 

material type, collapse patterns and condition of voids consistent with building damage state. For 

example, to score the condition of predicted voids for an unreinforced masonry building with 

pancake collapse pattern a random score from a uniform distribution of 1 to 5 is generated. For a 

reinforced concrete structure that will likely have triangular-shaped voids, this value is assumed 

to be uniformly distributed on [15, 20]. Three damage states of 3, 4, and 5 (representing the 

intensity of earthquake) were generated randomly from a uniform distribution with equal 

probability.  
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To predict the physical condition of live entrapped victims over time, survival likelihood 

functions associated with different building types presented in (Coburn et al., 1991) were 

employed. These functions account for building material type and capture hourly changes in 

survival rate. ΔSlit, it+Δt is randomly generated from a skewed normal distribution according to 

suggested functions for each building material type.  

Service time at each worksite is assumed to be independent of other criteria and 

uniformly distributed on [0, 24]. Service times are estimated upon identification of a worksite 

and may be randomly updated (by up to plus or minus 20%) at event intervals.  
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6 . Experimental Design, Results and Analysis 

Four sets of numerical experiments were conducted based on replications derived from the 2010 

Haitian earthquake case study described in Section 5. The first seeks to identify a best policy 

from those considered based on statistical analysis of system performance under the given 

policies. The second compares the performance of each policy to the a posteriori optimal 

solution under a decision framework, and determines how close to optimal results are from 

following a single, easy-to-implement policy. In a third set of experiments, sensitivity analysis 

was conducted on those policies identified as performing best. Finally, possible improvements to 

the best performing policy were investigated in a fourth set of experiments. 

6.1 Comparison of Policies  

Assessing the policies on number of survivors 

To evaluate the performance of the defined queueing system under each operational policy, the 

total number of survivors saved by the end of the rescue period and the time-averaged number of 

worksites waiting in queue over the rescue period were analyzed.   

The D&D method was applied here to identify a best operational policy from those 

policies tested in terms of the number of survivors (Dudewicz and Dalal, 1975). D&D is a two-

stage procedure that uses an indifference zone approach. It is designed for selecting the best of k 

systems with respect to the mean. The D&D method requires that the performance measures be 

strongly normally distributed over the simulation runs. The distribution of the total number of 

survivors achieved under each policy over the many replications were tested and found to be 

normally distributed as required.  
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The D&D method involves a two-stage sampling approach. In the first stage, a small 

sample of problem instances is tested (40 such instances were tested herein) to estimate first-

stage sample mean and variance ( (1) 2 (1)(40), (40)i iX S ). Results from the initial estimates provide 

the minimum number of samples needed in the second stage to conduct the D&D ranking under 

each policy. Weights used to compute final population mean and variance from runs of both 

stages as required by the D&D method were computed based on the procedure described in 

(Dudewicz and Dalal, 1975). Results of first- and second-stage sample size and population mean 

for a confidence level of 95% are shown in Table 5.  

Table 5 D&D Ranking Results for Total Number of Survivals 
kAP  1

iX (40)  2
is (40)  iN  2

i iX (N - 40)  1iw  2iw  i iX (N )  

HEALS 599 101.29 1062 574 0.045 0.955 575 

HEAL 596 99.69 1029 571 0.047 0.953 573 

HLRCS 595 99.62 1027 569 0.047 0.953 570 

HRCS 593 99.69 1029 567 0.047 0.953 568 

LRCS 589 98.63 1007 564 0.048 0.952 566 

RCS 586 95.96 953 562 0.051 0.949 563 

FALS 585 99.74 1030 560 0.047 0.953 561 

FAL 581 99.27 1020 557 0.047 0.953 559 

HE 578 99.25 1020 555 0.047 0.953 556 

FALR 579 97.40 982 554 0.049 0.951 556 

FAST 575 99.69 1029 548 0.047 0.953 549 

LST 563 98.33 1001 542 0.048 0.952 543 

FEMA 560 92.84 892 538 0.055 0.945 539 

FATT 556 95.76 949 533 0.051 0.949 535 

NW 538 97.49 984 516 0.049 0.951 517 

CS 454 107.65 1199 435 0.040 0.960 435 
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* Bold font indicates those policies that performed best for the indifference zone of    10 

survivors and a 95% confidence level.  

The results indicate that the HEALS policy that involves the highest number of live 

entrapped victims adjusted for loss rate and lowest service time, would lead to the largest 

expected number of survivors, and the HEALS, HEAL, HLRCS, HRCS, and LRCS policies tied 

for best given the indifference zone of 10 survivors and a 95% confidence level.   

Policies HEAL and HEALS consider the number of live entrapped victims existing at 

each site at the potential arrival times of the USAR teams to these sites. This is accounted for 

through consideration of the survival likelihood rate of change over time. The HEALS policy 

also attributes higher priority to worksites with shorter service times. As both policies perform 

among the best, it can be concluded that the estimated number of live entrapped victims at the 

worksites at expected team arrival times should play an important role in site prioritization. Note 

that the HE policy, which is not identified as a best policy, considers the same factors as the 

HEAL policy, but uses estimates of number of live entrapped victims at the time of deployment 

and not the estimated arrival of the USAR teams. Consequently, it does not perform as well. Two 

additional best performing policies, Policies HRCS and HLRCS, similarly account for this 

factor. The LRCS policy is the only one of the five best policies to not directly consider the 

number of live entrapped victims upon team arrival. Different from the other four top policies, 

this policy considers only changes in the survival likelihood rate as opposed to actual expected 

number of live entrapped victims. All top policies consider survival likelihood rate of change as 

an important factor. It is also worth noting that the FEMA prioritization scheme results in 36 

(6.2%) fewer survivors in terms of the D&D score than the best performing policy. 
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To compute the relative probability of performing best, k
WinP (AP ) , of each policy kP , 

that is, the frequency with which the policy will outperform all other considered policies, results 

from five replications of 3,000 additional problem instances were obtained as provided in Table 

6. Confirming earlier findings, Policy HEALS outperforms other policies with probability 

( HEALS
WinP p )  = 0.37. The second best policy, Policy HEAL, has probability 0.27 of performing 

best. This is followed by Policy HRCS with a probability of performing best of only 0.08. Note 

that the FEMA policy would outperform other policies with only probability 0.003. One might 

also notice that the LRCS policy performs better than other policies 5.9% of the time. 

Table 6 Relative Probability of Policies kp   Performing the Best 

 HEALS HEAL HRCS LRCS HLRCS RCS FALS FAL 

( )k
WinP p  0.376 0.27 0.077 0.059 0.057 0.047 0.029 0.028 

 HE FALR FAST LST FEMA FATT NW CS 

( )k
WinP p  0.026 0.009 0.009 0.006 0.003 0.001 0.001 0 

 

 

Figure 4 CDF of Total Number of Survivors 
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Using the same set of 5 replications of 3,000 problem instances, the cumulative 

distribution function (CDF) of the number of survivors was computed for the five best policies 

along with the best FEMA adjusted policy, FALS. Results are shown in Figure 4. Policies 

HEALS and HEAL stochastically dominate the other 4 policies, as their CDFs are completely to 

the right of the CDFs for the other policies. 

Assessing the policies on time-averaged number of worksites waiting in queue 

In addition to total number of survivors, time-averaged number of worksites waiting in queue is 

studied. The D&D method is applied once more to choose the best policy with respect to this 

second performance measure. The distributions of this second performance measure over the 

many replications and policies were tested and were found to be normally distributed for every 

policy as required by the methodology. Results are provided in Table 7 for an assumed 

confidence interval of 95% and indifference zone of 2 worksites.  

Table 7 D&D Ranking Results for Time-average Number of Worksites Waiting in the Queue 
kAP  1

iX (40)  2
is (40)  iN  2

i iX (N - 40)  1iw  2iw  i iX (N )  

LST 7 3 41 7 1.131 -0.131 7 

LRCS 8 3 41 8 1.084 -0.084 8 

FAST 9 3 41 9 1.040 -0.040 9 

CS 12 4 56 11 0.709 0.291 11 

FAL 12 4 63 11 0.632 0.368 11 

FATT 12 4 58 11 0.690 0.310 11 

FEMA 12 4 59 11 0.678 0.322 11 

FALR 12 4 63 11 0.635 0.365 11 

NW 12 4 62 11 0.645 0.355 12 

HRCS 12 4 53 11 0.751 0.249 12 

HE 12 4 55 11 0.724 0.276 12 
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HEAL 12 4 61 11 0.654 0.346 12 

RCS 12 4 60 11 0.668 0.332 12 

FALS 15 5 72 14 0.552 0.448 14 

HEALS 16 5 80 14 0.503 0.497 15 

HLRCS 16 5 81 15 0.494 0.506 16 
 

Three policies (LST, LRCS, and FAST) were found to perform best with respect to this 

second performance measure. All three policies prioritize worksites based on estimated service 

times. Policy LST gives higher priority to worksites for which shorter service times are expected. 

In addition to allocating higher priority based on lower expected services times, the LRCS policy 

also includes the impact of change of rate in survival likelihood function on priority scores. The 

FAST policy is equivalent to the FEMA policy, but is rescaled to capture the benefits of lower 

service times. Only the LRCS policy performs among the best with respect to both performance 

measures. Likewise, the HEALS, HEAL, HLRCS and HRCS, all of which account for estimated 

number of live entrapped victims, perform among the worst under the second performance 

measure.  

In circumstances where the worksites are similar in terms of use, material and likely 

damage, the probability of a given number of survivors at each worksite will be similar. In such 

cases, it would be best to follow a policy that performs well in terms of minimizing the time-

averaged number of worksites in queue. The LRCS policy offers advantages under both 

performance considerations. 
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Figure 5 CDF Time-Averaged Number of Worksites Waiting in the Queue 
 

The CDFs associated with the best performing policies given the time-averaged number 

of worksites waiting in queue were computed on the 5 replications of 3,000 problem instances 

mentioned above. The CDFs are graphed in Figure 5. The LST policy stochastically dominates 

the other considered policies. While both FEMA-based policies have the worst performance in 

these experiments, the FALS policy is noticeably suboptimal.  

6.2 Policy Performance Compared with Decision Approach  

In the previous section, the performance of 16 policies is assessed. The best of these policies 

would, using the D&D estimate, save as many as 575 people (Table 1) in the context of the case 

study. While this policy produces significantly more survivors, if there might exist an alternative 

policy that would produce even better results is not known. Thus, an upper bound on policy 

performance can be obtained by determining the optimal number that can be saved given 

available resources and other problem properties (e.g. survival function rates of decline), as well 
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posteriori assuming perfect knowledge of the situation in hindsight. The optimal achievable 

number will not likely follow from a single prioritization scheme. 

To determine the a posteriori optimal deployment of teams to worksites so as to 

maximize the number of survivors, the USAR team deployment problem with perfect 

information is modeled herein as a multi-team extension of the Multiple Tour Maximum 

Collection Problem with Time-Dependent Rewards (MTMCPTD). The MTMCPTD is a 

generalization of the team orienteering problem, a comprehensive review of which can be found 

in Vansteenwegen et al. (2011). It was introduced in Tang and Miller-Hooks (2007) in the 

context of the scheduling planned maintenance tasks to be performed by a single technician over 

a multi-day planning horizon for a company with geographically distributed equipment. Since 

they showed that the MTMCPTD is NP-hard, a tabu search heuristic embedded in an adaptive 

memory procedure and run over a rolling horizon was proposed. The procedure was shown to 

obtain near-optimal solutions on a real-world case study through the use of theoretical bounds. 

This procedure was extended to multiple agents (i.e. teams) for use herein and was employed to 

solve the USAR team deployment problem over 10 Haitian problem instances.  

The first 24 hours of the rescue mission were simulated. Table 8 displays the average 

total number of survivors produced under each policy and a percentage difference from the a 

posteriori optimal number of survivors that could be obtained under perfect information and 

using a decision approach rather than a single policy. Using the existing FEMA policy, 50.7% of 

the optimal a posteriori number of survivors is achieved. Employing Policy HEALS (highest 

number of live entrapped victims adjusted for loss rate and lowest service time) increases this 

performance by 35.7 percentage points to achieve 86% of optimality. On average, incorporating 

the impact of decreasing survival likelihood, with its degree of change over time, during the 
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transit time of USAR teams and service times improves the total number of survivors by between 

15 and 35 percentage points.  

Table 8 Policy Comparison to a Posteriori Solution 

Policy Survivors 
Percent from a 

Posteriori 
Optimal 

Policy Survivors 
Percent from a 

Posteriori 
Optimal 

HEALS 844 86.0 LST 589 60.0 
FALS 745 75.9 RCS 575 58.6 

HLRCS 680 69.3 FAL 571 58.2 
HEAL 676 68.9 HE 544 55.4 
FAST 645 65.7 FEMA 498 50.7 
LRCS 644 65.6 FATT 462 47.1 
HRCS 641 65.3 NW 387 39.5 
FALR 595 60.6 CS 160 16.3 

Upper Bound  981 

 

6.3 Sensitivity Analysis 

The five best performing policies, HEALS, HEAL, HRCS, LRCS, HLRCS, along with the FALS 

policy, were further investigated. Specifically, the sensitivity of the number of survivors 

achieved under each such policy to service time, travel time and the survival likelihood function 

was considered. A goal of this sensitivity analysis is to determine if one of the best policies 

identified in Section 6.1 in terms of the first studied performance function, average number of 

survivors, stands out above the others. It is worth noting that the HEALS policy, a top 

performing policy, is similarly structured to the best FEMA-based policy, the FALS policy.  

 Policy performance on five replications of each of 3,000 randomly generated Haitian 

problem instances was investigated for seven service time distributions:  ~U[1,24], ~U[24,48], 

~U[48,72], ~N(24,6.92), ~N(48,6.92), ~N(72,6.92), ~N(24,13.48), ~N(48,13.48). Travel times 

were assumed to be uniformly distributed on the interval [1,4], ~U[1,4]. Survival likelihood 
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functions were presumed to be negative exponentially distributed with rate 90%. Setting the rate 

parameter of the distribution function to 90% infers survival of at most 10% of live entrapped 

victims by the end of the first 24 hours. 

 

Figure 6 Sensitivity Analysis of Policy Performance under Alternative Service Time Distributions 
 

 Figure 6 shows the relative probability of performing the best, k
WinP (AP ) . This 

probability is based on the frequency with which the studied policy outperforms all other 

considered policies under each service time distribution.  

The results indicate that the HEALS policy (highest number of live entrapped victims 

adjusted for loss rate and lowest service time) outperforms other policies under all but one 

studied service time distribution: ~N(48,6.92). The HEAL policy performs best under this 

service time distribution and second best in all other cases. Moreover, increasing the mean 

service time from 12 to 24 or 48 hours under a uniform distribution improves the relative 
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probability of being the best for Policy HEAL. The relative improved performance of the 

HEALS policy compared with the HEAL policy is even greater under normally distributed 

service times, which in comparison to uniformly distributed service times has a peak and 

generally lower variance, but the general relative performance differences between all studied 

policies are minor. As mean service time increases, the difference in performance between 

HEAL and HEALS policies diminishes. The relative performance of the HLRCS policy 

improves with increased variance in service time.  

The impact of changing the rate in the survival likelihood functions on the performance 

of the studied policies is investigated further under uniform service and travel time distributions, 

~U[1,24] and ~U[1,4], respectively. The rate was varied between a 90% and 20% in the first 24 

hours. Results of these runs are given in Figure 7. 

From the figure, it can be observed that the lower the rate (i.e. closer to 20%) the better 

the relative performance of the HEALS policy. At the highest rate (90%), performance of the 

HEAL policy is nearly as good as that of the HEALS policy. This observation suggests that 

under conditions with higher survival likelihood and lower rate of change in this likelihood, it is 

more important to include service time in the prioritization. That is, priority should be given to 

those worksites with low service times. In conditions where rate of survival is dropping quickly, 

those worksites with more live entrapped victims should have the highest priority.  
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Figure 7 Sensitivity to Reduction in Survival Likelihood Rates Given by Reduction in First 24 Hours 
 

 

Figure 8 Sensitivity to Travel Times 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

90% Reduction 75% Reduction 50% Reduction 20% Reduction

RE
LA

TI
VE

 P
RO

BA
BI

LI
TY

 O
F 

PE
RF

O
RM

IN
G 

TH
E 

BE
ST

 

HEAL HRCS HLRCS HEALS LRCS FALS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

~U [1,4] ~U  [0.2,2] ~U  [1,9] ~N(2.5,1)

RE
LA

TI
VE

 P
RO

BA
BI

LI
TY

 O
F 

PE
RF

O
RM

IN
G 

TH
E 

BE
ST

 

HEAL HRCS HLRCS HEALS LRCS FALS

36 
 



Finally, given a service time distribution that is ~U[1,24] and negative exponentially 

distributed survival likelihood function with rate 90%, policy performance in terms of number of 

survivors under varying travel time distributions was studied. Results from these experiments, 

given in Figure 8, suggest that changes in travel time mean, variance and distribution have little 

effect on the relative probability of performing the best, k
WinP (AP ) , among considered policies. 

Again, policy HEALS outperforms other policies.  

6.4 Further Investigation of Policy FALS  

The FALS policy was further investigated through parameterizing its numerator and 

denominator: ( ) /
jifi i it tt itP r Sl Sα β

+− ⋅∆ . Five replications of 1,000 problem instances were 

completed for varying values of the parameters. Considering four different service time 

distributions, (~U[1, 48], ~U[0,3], ~N(24, .6.92) and ~U[L,U] for integer L between 5 and 8 

hours and 8U L= + ). While for a few settings of α and β (e.g. 1.3, 1.8α β= =  ) a statistically 

significant difference in performance was noted at a 95% confidence interval, the actual 

difference in number of survivors is trivial (e.g. an increase of less than one to perhaps two 

survivors). 
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7 . Conclusions and Extensions 

The problem of optimally deploying USAR teams to worksites in a disaster region requires quick 

evaluation of the disaster scene and rapid decision-making on the deployment of limited 

resources. These allocation decisions directly affect the number of people who can be extricated 

and, therefore, the number to survive. In this work, the idea of implementing a single policy for 

allocating USAR teams to worksites is explored. The use of a single policy is particularly 

pertinent in real-time operations and requires a minimal level of on-site, real-time computation. 

Moreover, prioritization based on a single policy reduces confusion that can arise in such 

difficult, emergency-related situations.  

  In this paper, this allocation of limited emergency resources to worksites is 

conceptualized as a M/G/c priority and preemptive spatially distributed queueing system with 

roving servers. Sixteen policies were proposed for operating the queueing system. These policies 

provide a mechanism for prioritization of worksites (e.g. collapsed buildings) in the field. The 

policies were tested on thousands of randomly generated problem instances developed on a real-

world based case study application. 

Of the 16 considered policies, seven policies were found to be promising under two 

selected performance measures, two of which, specifically HEALS and LRCS policies, were 

particularly notable. The first of these two policies prioritizes based on the lowest service time 

and highest number of live entrapped victims adjusted for losses while waiting for the USAR 

teams to arrive. The second ranks the worksites based on shorter service time and higher rate of 

change in survival likelihood. As time passes, survival likelihood diminishes. Thus, effectively, 

these factors together provide a measure of life expectancy. 
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A comparison between Policies HEAL and HEALS shows that service time alone is not 

enough. Better policies give priority to worksites with larger numbers of live entrapped victims 

and, therefore, possible survivors. Further comparison of the HE and HEAL policies shows the 

added improvement of considering loss in number of live entrapped victims during the time it 

takes to travel to the worksite and set up needed equipment. That is, the number of live entrapped 

victims at the worksites should be estimated from the time when USAR teams begin the actual 

rescue work rather than when deployment decisions are made. 

Alternative approaches to this problem of real-time USAR team deployment might be 

considered. In particular, methods that view the problem as an online routing problem may be 

useful. Consider, for example, the Online Traveling Salesperson Problem (OTSP). The objective 

of the OTSP is to minimize the total waiting time of a select subset of customers who are chosen 

to be served while simultaneously minimizing penalties incurred from rejecting other customers. 

Jaillet and Lu (2011) introduced a polynomial time algorithm for an offline version of this 

problem. They further developed an optimal c-competitive online algorithm for requests on a 

metric space where c is found to be approximately 2.28. This is a difficult problem class for 

which solutions can be obtained under restrictive assumptions, including the omission of 

preemption and priorities based on factors other than time of arrival to the system. 

The well-known Online K-server Problem on a metric space may also have some 

applicability here (Borodin and El-Yaniv, 1998). This problem seeks to minimize the total 

distance that servers must travel from one customer to the next to serve all incoming requests. 

While algorithms exist for several variants of this problem, e.g. the Work Function Online 

Algorithm, no algorithm has been developed that considers real-world complexities, such as 

prioritization, preemption and that not all customers can be served in the planning horizon. The 
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advantage of these approaches is that they can model dynamic worksite arrivals; however, 

neither modeling approach considers the effects of time evolution on problem characteristics, 

including service times and potential rewards received from serving customer locations. 
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